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ABSTRACT 

This report summarizes the analytical and experimental effort that 

demonstrates the feasibility of using a two-stage explosively driven light 

gas gun to obtain high projectile velocities. The second stage of this gun 

consists of an explosive lensing system that is used to produce an 

implosively formed piston whose velocity can be increased uniformly. The 

uniformly accelerated piston is shown to generate a nearly constant base 

pressure for projectile accelerations. Velocities as high as 12.2 km/set 

have been obtained for a 0.17-gram magnesium-lithium projectile. 
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SECTION I 

INTRODUCTION 

Many aspects of the space-exploration program involve the 

interaction of solid matter with gases or other solids at high relative 

velocities. Examples of such interactions are meteroid impact on space 

vehicles, planetary re-entry, and lunar cratering. In order to study these 

phenomena terrestrially it is necessary to have controlled laboratory means 

of accelerating known masses to velocities as high as 72 km/set, depending 

on the particular problem to be investigated. Unfortunately, the operational 

velocities of such devices used to accelerate predetermined and integral 

aerodynamic shapes are an order of magnitude below this velocity. 

For the past year Physics International has been engaged in a program 

of research to develop an explosively driven, light gas gun for accelerating 

intact projectiles of about 0.2-gram mass to the highest possible velocities. 

It has been recognized that the most effective launch cycle for achieving this 

goal would apply constant pressure to the base of the projectile for as long 

as possible. A constant base pressure launch cycle is also desirable from 

the standpoint of projectile integrity since it allows the simplest and least 

destructive accelerating wave system to be established within the projectile. 

In this situation, the maximum operational base pressure is then chosen 

safely below the maximum tolerable stress that the projectile material 

can support. 

The research carried out in this program has been focused on a two- 

stage gun design that employs a unique explosive lensing system to provide 

the second-stage launch cycle. This lens processes the second-stage 

accelerating gas by a series of weak shocks to produce a nearly uniform - 

projectile acceleration. Tests of this design have resulted in terminal 

velocities of 12.2 km/set for a 0.17-gram metal projectile. The results 
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reported here represent experimental confirmation of the concepts applied 

in the two-stage launcher. As yet no attempt has been made to optimize the 

launcher system or maximize the projectile velocities. A summary of the 

program to develop the two-stage gun is given in Section II, with particular 

emphasis on the explosive lens and the second-stage launch cycle. 

In support of the work on explosively driven launchers, a comprehensive 

experimental investigation was undertaken to determine the performance 

characteristics of explosive drivers. As a result of this study, three 

phenomena have been incorporated in a model of explosive-driver operation 

to account for observed departures from the ideal driver behavior (Section III). 

They are: (1) radial expansion of the gas-containing pressure tube, (2) the 

effect of boundary-layer growth in the driver, and (3) the formation of a 

metal, gas, or metal-gas jet by the progressively collapsing pressure tube. 

Although this investigation was carried out using linear explosive drivers, 

the results are qualitatively applicable to any system in which a piston is 

formed by the collapse of a gas-containing tube. The results of this study 

are summarized in detail in Section IV. 



SECTION II 

T W 0 -S’l.‘AGJr: EXPLOSIVELY DRIVEN LAUN CHERS 

The two-stage launching system is designed around a unique explosive 

lensing system that is used to collapse a gas-filled tube in a prescribed 

manner. The progressive collapse may be represented as a piston propagating 

into the gas with a velocity equal to the detonation velocity of the explosive 

that surrounds the tube. The velocity of such a piston can be changed almost 

instantly. For the launching system initially investigated, the explosive lens 

used as the second stage was designed to form a piston that accelerated 

uniformly. The operation of this lensing system is shown schematically 

in Figure 1. 

Fast Explosive 
Detonation Profiles for Detonation Velocity =D2 > Dl 

Lens is Line Equal Time Increments Slow Explosive 
Detonation Velocity = Dl 

Detonation velocity along the outside of the tube is V = D from A to B 
and then increases uniformly to V2 >> Vl from B to &. l 

FIGURE 1. UNIFORM ACCELERATION EXPLOSIVE LENS 

After the lens is initiated, a detonation wave front proceeds along 

the steel tube with a velocity that is initially equal to the detonation velocity 

of the slow explosive. However, the combination of the higher detonation 

velocity in the fast explosive and the changing contour of the interface 



between the fast and slow high explosives produces a continuously tilting 

wave front, or a phased detonation wave. As a result, the piston formed 

by the collapse of the steel pressure tube begins to accelerate. In general, 

the lens can be made to yield extremely high piston velocities. Yet there 

is an upper limit at which the collapsing tube will no longer drive the gas 

ahead of it, and this limit can be determined only by experiments. It now 

appears that 20 km/set is a reasonable value to assume for this upper limit. 

An inherent limitation on explosive drivers in general and the explosive 

lens in particular is the lowest velocity limit imposed on the piston. The 

minimum piston velocity corresponds to the slowest detonation velocity 

employed in the lens. While there are high explosives with detonation 

velocities as 1.0~ as 2 km/set (Reference l), tests have shown that 5 km/set 

represents a more realistic lower limit because of the energy density of the 

explosive that is required to properly collapse a metal tube. This lower 

velocity limit requires that a first-stage launcher be used to inject the 

projectile and a sufficient length of driver gas into the second-stage explosive 

lens at a velocity in the neighborhood of 5 km/set. Figure 2 shows 

schematically the collapse of the first-stage barrel and the formation of a 

conical piston after the second-stage lens has been partially detonated. 

Barrel (Pressure Tube) 
of Launcher Fast Explosive 

Detonation Front \ CI~.. 

‘- - 
--- 

t 

Approximately the Initial Lens Piston Ve lot :ity 

FI :GURE 2. OPERATION OF EXPLOSIVE LENSING SYSTEM 
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The operation of a complete two-stage launching system is illustrated 

in Figure 3. The first stage is a tamped* linear explosive driver, which 

accelerates the projectile from rest by reflecting a strong shock from the 

base of the projectile. The first stage is long enough so that the rarefaction 

produced when the first-stage piston is stopped does not significantly affect 

the driver gas injected into the second stage. The operation of the explosive 

lens is initiated by a trigger pin that responds to the arrival of the first- 

stage shock wave at the chambrage plane. When the projectile and the driver 

gas have been accelerated by the first stage to approximately 5 km/set, the 

second-stage piston is formed and begins to accelerate uniformly. The 

acceleration of the second-stage piston is programmed so that the peak 

pressures generated on the base of the projectile are maintained below a 

certain specified limit during the launch cycle. For this design, the second- 

stage piston is accelerated uniformly to 12 km/set, at which point it is 

stopped. The projectile continues to accelerate to its terminal velocity of 

14.1 km/set by the expansion of the second-stage driver gas. 

A. FIRST -STAGE ACCELERATION 

The gasdynamic cycle of the first stage is accomplished by a linear 

tamped explosive driver using helium as the driver gas. The tamper 

minimizes the radial expansion of the pressure tube behind the shock wave 

and makes it possible to obtain longer lengths of shocked gas. However, 

arbitrarily long lengths of shocked gas were found to be impossible because 

of the growth of a boundary layer in the shocked gas. Since the gas in the 

boundary layer receives little additional axial acceleration from the implosion 

of the gas-containing pressure tube, it is left behind the detonation wave 

and trapped by the collapsing tube. This loss of gas causes downstream- 

running rarefaction waves that reduce the pressure and velocity of the shocked 

A thick-walled metal tube, the tamper, surrounds the explosive and is 
designed to minimize the radial expansion of the pressure tube behind the 
shock wave. 

5 



Diluted Nitromethane 

Detasheet 
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FIGURE 3. OPERATION OF A TWO-STAGE EXPLOSIVELY 
DRIVEN LAUNCHER 



gas and decrease the shock velocity. This loss continues until the mass flow 

through the shock wave equals the mass flow trapped by the collapsing liner. 

At this point, the shock velocity becomes equal to the piston velocity, and 

the length of shocked gas reaches a fixed steady-state value. 

It was necessary to know the precise acceleration history of the 

projectile as well as the time-space variation of driver-gas properties in 

the first stage in order to determine when and where the second-stage 

operation should begin. Therefore the effects of boundary-layer growth in 

the first-stage driver had to be accounted for in any calculation of first- 

stage performance. Based on observed driver performance, a method of 

calculation was devised to account for these gas conditions in the first- 

stage driver. The method is reported in detail in Section IV. 

The performance calculation of the first-stage driver was carried 

out using a one-dimensional, hydrodynamic computer program capable of 

simulating area changes. In the calculation, an 0.25-inch-diameter, 

0.17-gram projectile having an area1 density of 0.5 gm/cm2 was accelerated 

into air at one atmosphere. After accelerating for 60 cm the velocity of the 

projectile was 5.2 km/set, and the base pressure and counterpressure were 

virtually equal. The results of this calculation are shown in Figure 4. 

Included in this figure are several relevant pressure distributions taken at 

various times during the acceleration of the projectile. 

In the course of the reproducibility tests of the first-stage launcher, 

a new diagnostic technique was developed to experimentally measure the 

position-time history of the accelerating projectile in the barrel. This 

technique utilized a high-speed streaking camera to record the passage of 

the air shock, the projectile, and the hot-helium driver gas by viewing 

through small apertures in the barrel (see Figure 5). These apertures 

were filled with clear glass rods to delay any small rarefactions that would 
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modify the pressure distribution behind the projectile. An experiment was 

designed using experimental parameters identical to those used in the above 

performance calculation. The projectile was launched intact to a velocity 

of 5.4 kmlsec. A range radiograph of the projectile in flight is printed as 

Figure 6. The observed trajectory of the projectile in the barrel was 

FIGURE 6. RANGE RADIOGRAPH OF PROJECTILE 
ACCELERATED BY A FIRST-STAGE LAUNCHER 

almost identical to the calculated trajectory. The detailed comparison of 

the experiment and the calculation is shown in the time-distance plane of 

Figure 4. Since the agreement of the calculated with the observed 

performance of the first-stage launcher was excellent, the calculated 

pressure, density, and velocity distributions of the gas behind the 

accelerating projectile were assumed to be quite close to the actual gas- 

dynamic conditions. The ability to calculate the first-stage projectile 

acceleration in detail is vital to the operation of the two-stage system. 

Because of the microsecond time scale, it is necessary to know very closely 

the time at which conditions in the first stage are optimum for the operation 

of the second stage to begin. 
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B. SECOND-STAGE ACCELERATION 

The explosive lens used in the second-stage accelerates the projectile 

from about 5 km/set to the desired final velocity. For the purposes of 

initial tests, the lens was designed to produce a uniformly accelerating 

piston. Because of the communication time between the accelerating piston 

and the projectile, there will always be shock waves reflecting between the 

piston and the projectile. By properly matching the piston acceleration to 

the driver-gas conditions and the area1 density of the projectile, these 

shocks can be made very weak. 

To illustrate this point, several calculations of second-stage 

performance were made. Each calculation was based on the gas conditions 

and the projectile velocity chosen from the first-stage performance 

calculation (Figure 4). That is, the second-stage piston would be formed 

10 cm downstream of the chambrage plane (or area change) at the time when 

the projectile is moving at 4.8 km/set. At this instant, there is 15 cm of 

driver gas at approximately 1.3 kb between the piston and projectile. The 

calculated pressure distribution behind the projectile at this time is shown 

in Figure 7. 

In order to produce a nearly constant base pressure, it is necessary 

to choose the second-stage acceleration a that is equal to the ratio of the 

pressure P in the driver gas at the time the second-stage acceleration 

begins to the area1 density u of the projectile and driven gas; or, a = g. 

The calculated position-time history given in Figure 8a illustrates the 

performance of a second-stage acceleration that is matched to the first- 

stage gas conditions in this manner. For this calculation, the second-stage 

piston accelerates uniformly from 5.5 km/set to 12 km/set over a distance 

of 280 cm. Figure 8b shows the nearly constant base pressure produced by 

this acceleration. 
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While the above calculation represents the most desirable type of 

launching cycle, the 280-centimeter explosive lens that would be required 

to reach projectile velocities in the neighborhood of 15 km/set presented 

certain fabrication difficulties. The alternative would be to redesign the 

first-stage launcher to permit the use of a shorter explosive lens. In order 

to expedite the fabrication, assembly, and test of a two-stage explosively 

driven launcher, additional calculations were made to examine uniform 

second-stage acceleration that did not match the driver-gas conditions 

generated by the first stage. 

In the first calculation, the piston accelerated uniformly from 

5.5 km/set to 12 km/set over a distance of 41 cm. The results showed 

that the projectile reached a final velocity of 14.5 km/set. However, the 

peak base pressures generated by this launch cycle were over 70 kb, and 

this represented an intolerable environment for both the projectile and the 

explosively formed piston. 

In the second calculation, given in Figure 9, the piston accelerated 

uniformly from 5.5 km/set to 12 km/set over 82 cm, or one-half the 

acceleration of the previous calculation. Peak pressures of only 20 kb 

were produced in this launch cycle and the projectile was accelerated to 

14.1 km/ sec. Since saboted models have been launched at peak pressures 

of 24 kb (Reference 2), this piston acceleration not only represented a 

practical launch cycle, but it was also one in which the peak pressures and 

detailed wave interactions were compatible with the integrity of the projectile. 

As a result, this acceleration was chosen to test the uniformly accelerated, 

explosive lensing concept. 

To determine the sensitivity of launcher performance to the exact 

time at which the second-stage lens is initiated, two additional performance 

calculations were made. In each calculation the second-stage piston 
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accelerated from 5.5 km/set to 12.0 km/set over a distance of 82 cm. 

The gas conditions for the first calculation were taken from the first-stage 

performance calculations assuming the second-stage lens was initiated 

10 CLsec early. In a similar manner the gas conditions for the second 

calculation simulated the feasibility that the second lens was initiated 

10 psec later than desired. The results indicate that early initiation of 

the second stage results in lower peak pressures on the ~projectile and 

piston, but the final velocity is also slightly lower (13.2 km/set). If the 

second-stage initiation is late, there is not substantial change in the peak 

pressure generated or the final velocity of the projectile. In all three 

design cases, the muzzle exit times were approximately the same. 

The calculated performance of the complete two-stage launching 

system is shown in Figure 10. 

C. SECOND-STAGE EXPLOSIVE LENS 

The most effective second-stage lens design is dictated by two 

requirements: (1) The piston should begin to accelerate from the lowest 

possible velocity, which is determined by the detonation velocity of the 

slow explosive component. (2) F or a given piston acceleration, the maximum 

economy of explosives is obtained for the greatest difference in the detonation 

velocities of the fast and the slow explosive components. 

Nitromethane represented a very practical choice for the slow 

component since it is an inexpensive liquid explosive with sufficient energy 

density to properly collapse a metal tube. Also, it is a homogeneous liquid 

explosive that provides uniform detonation characteristics, which reduces 

dimensional tolerances. Several tests were made to determine the lowest 

detonation velocity that could be obtained by diluting nitromethane with 

methyl alcohol. In each of these tests the mixtures were sensitized with 

5 percent by volume of ethylene diamine. The results of these tests are 
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. 

shown in Figure 11. It was found that a mixture containing 45 percent by 

volume of methyl alcohol, whose detonation velocity was 4.9 krn/sec, 

represented the threshold of stable detonation. A mixture of 30 percent 

methyl alcohol by volume whose detonation velocity is 5.5 km./sec was then 

selected as the slow explosive component of the lens since it was well 

within the limits of a stable, reproducible detonation. 

7 

100 80 60 40 

Nitromethane (percent by volume) 

Note: Mixture Contained in Steel Tube, 
0.5625-inch I. D. x 0.875-inch 0. D. 

FIGURE 11. DETONATION VELOCITY OF NITROMETHANE DILUTED 
WITH VARIOUS AMOUNTS OF METHYL ALCOHOL 

Besides having a high detonation velocity, the fast explosive component 

of the lens must be compatible with the geometry and containment of the 

diluted nitromethane. For these reasons DuPont Detasheet (EL506A8) was 

chosen as the fast explosive component. This commercial explosive is 

composed of an integral mixture of PETN (pentaerythritol tentranitrate) 

and elastomer binder and has a detonation velocity of 7.7 km/set. Since 

Detasheet is available in sheets of various thicknesses which may be cut to 

the desired configuration and bonded to almost any surface, it is well suited 

for the contour of the lens. 
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Tests were then conducted to determine the ability of Detasheet to 

initiate diluted nitromethane through the polyvinyl chloride used to contain 

the diluted nitromethane. Polyvinyl chloride (PVC Type I) is a thermal 

plastic selected because of its ability to be formed into arbitrary shapes and 

its resistance to corrosion by nitromethane. In order to determine the 

thickness of PVC through which the Detasheet would initiate the nitromethane, 

an experiment was conducted in which a PVC wedge. separated the two 

explosives as in Figure 12. The results showed that Detasheet could initiate 

the nitromethane through 0.080 in. of PVC. Consequently, all the lens 

contours have been fabricated from PVC in thicknesses ranging from 0.030 in. 

to 0.060 in. An interesting by-product of this experiment should be noted: 

as the shock wave progressed from the thick to the thin end of the wedge, the 

shocked but undetonated nitromethane changed color from a light yellow to a 

deep red. The spectrum did not represent a self- sustaining chemical reaction, 

but it appeared to follow pressure fluctuations in the liquid. It is possible 

that this effect could be developed as a technique for measuring transient 

high pressures. 

A prototype lens for testing the accuracy of the programmed piston 

acceleration and the lens’s ability to produce an accelerating shock wave was 

constructed using a vacuum-forming technique. It was designed to provide a 

uniform piston acceleration from 5.5 km/set to 12.5 km/set over a distance 

of 60 cm. Its 1.5-inch-diameter pressure tube initially contained helium at 

410 psi. Shorting pins, piezoelectric transducers, and a resistance-wire 

gauge along the pressure tube monitored the detonation and shock trajectories. 

The results of this test are shown in the time-distant plane of Figure 13. 

The predicted and the observed detonation trajectories coincide, and the shock 

wave does accelerate. There is evidence of jetting in the implosively formed 

piston since the observed shock breaks out faster than predicted, but this 

behavior can be minimized or eliminated by the proper choice of 

experimental parameters. 
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The operation of an explosive lens was further demonstrated by the 

experiment illustrated in Figure 14. The continuously tilting detonation 

wave in the nitromethane was observed experimentally by backlighting a 

cross-section version of the explosive lens with an explosive argon candle. 

The high-speed framing camera sequence given in Figure 15 shows the 

results of this experiment. The position-time history of the observed 

detonation wave plotted in Figure 15b shows that the axial component of 

the detonation velocity followed the programmed acceleration very precisely. 

These tests established the feasibility of the explosive lens concept, 

but several important problems were raised. For instance, it was not clear 

what effect the changing mass ratio of explosive to pressure tube (c/m) of 

the lens had on the collapse process; in a typical lens, this c/m ratio ranges 

from approximately 20 to very nearly zero because of the ‘continuously 

varying contour. Also, there seemed to be a relation between jetting 

phenomena and the ratio of pressure tube wall thickness to internal diameter. 

These effects were investigated in detail and the results are given in 

Section IV. 

D. ASYMMETRIC IMPLOSION TECHNIQUE 

The fabrication of a large, second-stage lens is laborious and requires 

a complex vacuum-formed mold for each lens contour design. This prompted 

a search for a simpler approach. It was postulated that the implosion process 

used to form the virtual piston need not be symmetric. An experimental 

study initiated under a separate program (Air Force Contract AF40(600)-1129) 

demonstrated the potential of an asymmetric implosion. Several experiments 

were conducted in which a metal pressure tube placed on a steel plate was 

collapsed asymmetrically by a tilting detonation wave that formed a consttint- 

velocity virtual piston. The geometry of this asymmetric linear driver is 

shown schematically in Figure 16. The performance of the asymmetric 

driver was found to be quite comparable to the performance of the symmetric 
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driver. That is, the shock trajectories were found to be quite similar over 

the driver lengths tested. 

An explosive lens contour that would provide the second-stage piston 

for the two-stage gun was used to fabricate a lens that would collapse a 

pressure tube asymmetrically. This asymmetric lens is essentially a slice 

of one half of the symmetric lens. The performance of this lens is shown 

in the high-speed framing camera record in Figure 17. The arrival times 

of the phased detonation wave at locations along the pressure tube were 

determined from the framing camera record, and the acceleration of the 

phased detonation wave along the pressure tube was calculated. The observed 

acceleration was found to be identical to the programmed acceleration. The 

shock wave generated in the pressure tube by the accelerating virtual piston 

followed the expected trajectory during the early phases of the lens operation. 

The experiments with the symmetrically and asymmetrically formed 

accelerating pistons indicated that the shock wave generated by the s.symmetric 

implosion departs from that of the symmetric implosion only for very long 

lengths of shocked gas. The difference in performance between these two 

modes is related to the manner in which the collapse of the pressure tube 

takes place. The asymmetrically collapsed pressure tube is less able to 

prevent the loss of boundary-layer gas, so when long lengths of shocked gas 

are required, a symmetric implosion is more desirable. However, for 

applications as a second stage in the two-stage launcher, the asymmetric 

implosion appears to be as effective as the symmetric implosion, since the 

length of gas between the piston and the projectile is never large in terms 

of barrel diameters. 

The use of asymmetric lenses has several advantages: (1) In the 

explosive lens, any changes in the second-stage acceleration or terminal 

projectile velocities requires a different lens contour; the contour of an 
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asymmetric lens can be traced on sheets of plastic or metal and cut out 

rather easily, permitting designs and techniques to be evaluated rapidly. 

(2) By adopting the asymmetric design, the required amount of explosive is 

reduced considerably. (3) Th e asymmetric design permits complete optical 

coverage of the lens operation, where the symmetric does not, 

E. TWO-STAGE LAUNCHER PERFORMANCE 

The first two-stage launcher system tested, utilized the asymmetric 

implosion technique in the second stage. Initiation of the second-stage lens 

was accomplished by using the response of a contact pin located at the initial 

projectile position, which permits the two-stage gun to be self-timing. The 

complete launcher is shown immediately before firing in Figure 18. 

Because of the lack of experience with extremely high velocities, 

the first launching was conducted into a range of helium at one atmosphere 

and thin foil range switches were used to fire down the range radiograph 

units. This first test, in which the operation of the second stage was near 

ideal, resulted in a terminal projectile velocity of 12.2 km/set. However, 

the 0.17-gram lithium-magnesium projectile was partially fragmented, as 

Figure 19 shows. Figure 20 illustrates in the time-distance plane the close 

agreement between the observed and calculated performances of the complete 

two- stage system. 

This experiment was subsequently repeated, except that the range 

atmosphere was reduced to 20 mm Hg of air and the range radiographs were 

triggered by preset delays. The velocity of the projectile was again 

12.2 km/set, and the projectile was partially fragmented as in the first 

launching. The detailed performance of the two-stage gun used in this 

second experiment was identical to the performance of the one used in 

the first. 
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a. Two Stage Launcher Used to Accelerate a 0.17 gm 
Projectile to 12.2 km/set 

b. Asymmetric Explosive Lens Used as the Second 
Stage of the Two Stage System 

FIGURE 18. TWO-STAGE LAUNCHER 
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Since the projectiles used in the first two experiments behaved in 

a similar manner, in spite of the vastly different range conditions, the 

second-stage acceleration cycle was re-examined as a possible cause of 

projectile damage. It was noted that as the detonation front in the second 

stage accelerates from 5.5 km/set to 12.5 km/set, the length,of the cone- 

shaped piston becomes nearly as large as the calculated distance between an 

ideal planar piston and the projectile (Figure 9). Thus, for the gasdynamic 

cycle chosen for this two-stage gun, the projectile is potentially in danger 

of becoming trapped in the cone-shaped region of the explosively formed 

piston. Indeed, if there is any driver gas lost through the piston during 

the second- stage acceleration, the projectile could be fragmented by an 

encounter with the cone-shaped piston. The second- stage performance 

calculation indicates that this encounter would occur late during the 

acceleration of the projectile. 

Assuming that the asymmetrically formed, second-stage piston had 

allowed a significant leakage of driver gas, the two-stage system was 

retested using a full three-dimensional explosive lens as the second stage. 

It was hoped that the resulting symmetric, second- stage piston would be 

well enough formed to prevent an encounter between the piston and the 

projectile. This experiment was carried out into a range atmosphere of 

20 mm Hg of air, and again the range radiographs were triggered by preset 

delays. Although the two-stage system operated as programmed, the 

projectile emerged fragmented at 10.0 km/set. 

The above tests .have established the feasibility of launching projectiles 

to velocities that are unobtainable by conventional light gas guns. The 

observed performance of the first-stage launcher and the second-stage 

lens was in very good agreement with the calculated performance. The 

programmed base pressures on the projectile are well within previously 

demonstrated limits for intact projectiles. The inability to launch an intact 
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projectile with the present design is basically a consequence of the improper 

matching of the first- and second-stage characteristics. That is, the 

present second-stage lens design requires that the pressure of the driver 

gas injected by the first stage be approximately 4 kb in order to maintain a 

near constant base pressure on the projectile. Conversely, the 1.3-kilobar 

driver gas actually injected by the first stage dictates a second-stage lens 

with substantially lower acceleration than the acceleration used in the above 

tests (Figure 8). The present acceleration was chosen to expedite the 

fabrication, assembly, and testing of the two- stage explosively driven gun. 

When the pressure of the driver gas delivered to the second stage is more 

compatible with the acceleration of the second-stage piston, the distance 

between the piston and the projectile varies only a few percent during the 

acceleration. Therefore matching the first- and second-stage characteristics 

would elirninate the possibility of trapping the projectile in the implosively- 

formed accelerating piston. 
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SECTION III 

IDEAL PERFORMANCE OF THE LINEAR EXPLOSIVE DRIVER 

The explosive driver represents a new generation of hypervelocity 

test devices in which a portion of the chemical energy of an explosive is 

converted to the kinetic and internal energy of a gas. This process occurs 

in a controlled manner to produce specific energy densities in the gas which 

are considerably higher than those obtainable by more conventional 

techniques. The basic mechanism of energy conversion utilizes the pressure 

developed behind a detonation wave to progressively collapse a gas- 

containing metal tube. The implosion of the tube forms a cone-shaped piston 

that drives a strong shock wave into a column of gas. The velocity of the 

piston, and hence of the gas, is determined by the particular explosive 

system used. For example, the two-stage launcher employs two different 

types of piston motion: (1) a constant-velocity piston generated by the 

linear explosive driver of the first stage, and (2) the uniformly accelerated 

piston produced in the second stage by the explosive lens. 

For completeness, a brief review of the ideal performance of the 

linear driver is given below. While this description assumes a constant- 

velocity piston, the analytical methods introduced here are generally 

applicable to all drivers involving the progressive implosion of a tube 

containing gas. 

The operational concepts of the linear explosive driver are illustrated 

in Figure 21. A thin-walled metal cylinder serves as a pressure tube 

containing the driver gas. This tube is surrounded by a concentric cylinder 

of high explosive. After the explosive is initiated at the closed end of the 

tube, a detonation wave propagates in the cylinder of explosive. The high 

pressure behind the detonation wave accelerates the walls of the pressure 

tube inward toward the axis, sealing the tube and forming a cone-shaped, 
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piston (Figure 21b). This piston has a constant axial velocity equal to the 

detonation wave velocity in the explosive. The motion of this piston 

generates a strong shock wave in the stationary driver gas, which accelerates 

it to the velocity of the piston. In addition, the shock wave produces an 

internal energy density in the gas that is equal to its kinetic energy density. 

For an ideal gas, the conservation of mass across the shock front 
Y+l requires the velocity of the shock wave to be - 2 times the velocity of the 

piston, where y is the ratio of the specific heats of the gas. Figure 21c 

shows the ideal position-time histories of the piston and the shock wave. 

These trajectories are presented in the dimensionless coordinates 

x=x 
d and 

Here x and t are the distance and time, respectively, after the shock wave 

begins to move ahead of the detonation wave, d is the internal diameter of 

the pressure tube, and D is the detonation velocity of the explosive. The 

use of these coordinates facilitates the comparison of drivers having pressure 

tubes of different dimensions or utilizing explosives with different detonation 

velocities. It should also be noted that in this coordinate system all slopes 

are normalized with respect to the detonation velocity; they become ratios 

of velocities of which the denominator is detonation velocity. For example, 

in Figure 21c the trajectory of the detonation wave has a slope of 1 

& 1 d dx 1 d -$.ET. 5. dt=;T. b - D = 1. 

Y+l Similarly, the trajectory of the ideal shock wave has a slope of 2 

(4/3 for y = 5/3). Figure 21~ also shows that for the ideal driver .the length 

of shocked gas, the distance between the shock wave and piston, increases 

linearly with distance and is limited only by the length of the driver. 
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The pressure P2 in an ideal gas behind a strong shock wave is 

gil-cn by the conservation of momentum as 

where P 1 and P 1 are the pressure and density of the stationary gas ahead 

of the shock, y is the ratio of specific heats of the gas, and D is the velocity 

of the shocked gas, the detonation velocity. This relationship is indicative 

of how conditions in the shocked gas can be varied over a considerable 

range of gases (y), initial loading densities (p,), and explosives (D). 

Table I lists the dynamic and thermodynamic properties produced 

in helium by a typical explosive driver used for accelerating projectiles. 

TABLE I 

PROPERTIES PRODUCED IN HELIUM BY A TYPICAL 
EXPLOSIVE DRIVER 

Gas Velocity . . . 
Pressure . . . . 
Density . . . . . 
Internal Energy Density 
Kinetic Energy Density. 
Specific Enthalpy . . 
Temperature . . . 
Sound Speed. . . . 

. . . . 6.42 km/set 

. . . . 3.98 kb”: .I- 

. . . . 0.03 12 gm/cm3-‘ 

. . . . 20,600 J/gm* 

. . . . 20,600 J/gm-,* 

. . . . 34,400 J/gm*- 

. . . . 6,600~ K:‘: 

. . . . 4.78 km/set’:’ 

‘:As calculated, assuming helium behaves as an 
ideal gas with a ratio of specific heats (v) of 5/3. 

It is noted that for an ideal gas the magnitude of each of these properties 

except density is a function only of the detonation velocity of the explosive 

used. For this particular driver, whose explosive was nitromethane, 

the detonation velocity was 6.42 km/set. The initial pressure of the helium 
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was 645 psi. The observed performance of this driver is shown in, 

Figure 22: It is seen that the shock trajectory closely follows the ideal 

strong shock prediction. 
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FIGURE 22. PERFORMANCE OF A 4-kilobar 
EXPLOSIVE DRIVER 

When a linear explosive driver is used to launch projectiles, the 

shock wave in the driver gas reflects from either the projectile, as in an 

unchambered gun, or from the area change, or “breech, I’ as in a chambered 

gun. The reflected shock brings the gas essentially to rest, converting 

its available kinetic energy to additional internal energy. This process 

produces a reservoir of gas having an extremely high, energy density. 

For example, if the thermodynamic state of the gas prior to this reflection 
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is given by the properties listed in Table I, the properties in the gas behind 

the reflected shock include those given in Table II. 

TABLE II 

PROPERTIES .PRODUCED IN HELIUM BEHIND A REFLECTED SHOCK 

Pressure ......... -20 kb 
Density .......... -0.08 gm/cm3 
Temperature ........ - 15, OOO” K 
Sound Speed. ........ -7 km/set 

These values are estimates based on the reflection of a strong shock wave 

traveling in an ideal gas and being reflected from a perfect “stone wall. II 

39 



SECTION IV 

OBSERVED PERFORMANCE OF THE LINEAR EXPiOSIVE DRIVER 

An extensive series of experiments was conducted during the past 

year to investigate the performance of the linear explosive driver. The 

primary objective of these experiments was to support the design and 

development of the two- stage launching system by investigating the 

progressive collapse of a gas-containing metal tube over a wide range of 

experimental parameters. The results of this study showed certain 

departures from the ideal driver performance described in the previous 

section. Considerable effort was then expended to relate the observed 

driver behavior to the mechanisms that control this behavior. Three 

phenomena were incorporated in a model of explosive-driver operation to 

account for observed driver performance. They are: (1) radial expansion 

of the pressure tube behind the shock wave, (2) the effect of boundary-layer 

growth behind the shock wave, and (3) formation of a metal or metal-gas 

jet by the collapsing pressure tube. These phenomena are interrelated 

through the kinetics produced by the imploding pressure tube. Their 

interdependence is such that changes in driver behavior resulting from 

certain experimental parameter changes cannot be attributed solely to one 

particular phenomenon. However, the ability of the model to explain, predict, 

and control the behavior of explosive drivers justifies the categorization of 

the se phenomena. 

A. EXPANSION OF THE PRESSURE TUBE 

If the pressure in the gas behind the shock wave exceeds the dynamic 

yield strength of the pressure tube, the walls of the tube will begin to expand 

radially. For relatively short lengths of shocked gas, the expansion is 

almost negligible since further expansion is prevented by the detonation wave 

that closely follows. For longer lengths of shocked gas, however, the tube 
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expansion becomes extremely important. It allows the shocked gas to 

expand, which reduces the pressure in the gas and decreases the velocity 

of the shock wave. The shock trajectories shown in Figure 23 demonstrate 

this effect. Diluted nitromethane with a detonation velocity of approximately 
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FIGURE 23. COMPARISON OF SHOCK TRAJECTORIES PRODUCED 
BY THE PROGRESSIVE COLLAPSE OF A 0.316-inch 
OUTER DIAMETER TIMES 0.258-inch INNER DIAMETER 
STEEL TUBE CONTAINING HELIUM AT VARIOUS 
IN1 TIAL PRESSURES 

5.5 km/set was used for these experiments to progressively collapse a 

0.316-inch external diameter by 0.258-inch internal diameter steel tube. 

It is seen that as the pressure increases the shock velocity decreases. 

The observed shock velocities correspond to pressures of 1.3, 3.4, and 

6.0 kb in the shocked helium for the initial pressures of 210, 660, and 

1585 psi, respectively. It is also noted that for the initial loading 

pressures of 5 x 10 -4 psi and 210 psi, the observed shock velocities 
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are considerably higher than ideal predictions. This is attributed to the 

formation of a metal or metal-gas jet discussed in a following section. 

In addition to causing shock attenuation, tube expansion .will eventually 

lead to rupture of the pressure tube. Figure 24 shows a radiograph of an 

expanding 1015-steel pressure tube. Longitudinal fractures resulting from 

the expansion can be seen between the shock and detonation waves. The 
initial pressure behind the shock wave for this experiment was approximately 

10 kb, which had decayed to 5 kb at the time of this radiograph. 

For reasonably low gas pressures, the thickness of the pressure tube 

walls can be increased to reduce radial expansion. However, at higher 

pressures the wall thickness becomes prohibitively large and increasingly 

more difficult to collapse. The trajectories shown in Figure 25 illustrate the 

effect of increasing the wall thickness 6 of the pressure tube from the 

0.028 inches used in the experiments described in Figure 23 to 0.067 inches. 

“” 
J A 6 = 0.028 in. (Shot 255-13 

I o 6 = 0.067 in. (Shot 255-16) 

60 - 

Detonation Wave 

40 - 

Ideal Shock Wave 

20 - 

Pl = 1585 psi 

, I I I I 
20 40 60 80 100 

-,xX d (Dimensionless Distance) 

FIGURE 25. COMPARISON OF SHOCK TRAJECTORIES PRODUCED 
BY THE PROGRESSIVE COLLAPSE OF STEEL TUBES, 
0.258-inch INSIDE DIAMETER, HAVING DIFFERENT 
WALL THICKNESSES 
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It is seen that the use of the tube with thicker walls causes the shock velocity 

to increase. ‘Since the pressure behind the shock wave for each of these 

experiments exceeded the dynamic yield strength of the metal tube, the 

additional mass of the thicker tube merely reduced the rate at which the 

tube expanded. 

A more desirable method of limiting pressure tube expansion is to 

use a thick-walled pressure vessel to surround the explosive driver. This 

vessel is called a “tamper. ‘I The tamper is chosen to have such high yield 

properties that it will not yield under the pressure developed behind the 

shock wave. As a result, the pressure tube will expand a small amount 

until an equilibrium position is reached where the pressure in the explosive 

between the pressure tube and tamper is approximately equal to the pressure 

in the shocked gas. This method is illustrated in Figure 26. 

The use of a tamper around the explosive driver is most important 

if longer lengths of shocked gas are desired. The shock trajectory given in 

Figure 26b shows the length of 2-kilobar shocked gas that has been obtained 

using a tamped driver. The internal diameter of the pressure tube used for 

this driver was one and a half inches. Another effect of the tamper is to delay 

radial expansion of the detonation products. This allows the use of thinner 

explosive layers for the implosion process. Even if the shocked gas pressure 

exceeds the dynamic yieid strength of the tamper, it can be used to delay 

pressure tube expansion at least until the arrival of the detonation wave. 

B. GROWTH OF BOUNDARY LAYER IN A LINEAR EXPLOSIVE DRIVER 

Since the use of a tamper around the explosive driver minimizes 

the effect of pressure tube expansion, it would appear that the length of 

shocked gas could be made arbitrarily long. However, experimental 
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attempts to do this revealed a new driver behavior. Figure 27 shows the 

wave trajectories observed for a very long (12.5 ft) tamped driver. The 
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FIGURE 27. PERFORMANCE OF A LONG, TAMPED 
EXPLOSIVE DRIVER 

shock wave was found to have a constant velocity close to that predicted by 

the ideal model for approximately half of its travel in the pressure tube. 

At this point the shock velocity gradually decreased to a velocity that was 

very nearly equal to the detonation velocity. Consequently, the length of 

shocked gas jncrcases uniformly at first, but eventually reaches a 

maximum value. 

The recovery of a completely intact collapsed pressure tube 

provided vital insight to the driver performance described above. Inspection 
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of this tube showed that it was not uniformly collapsed along its axis of 

syrn.metry. Measurements showed complete closure for approximately l/5 

of the original tube length, then the internal diameter gradually began to 

increase until it reached a constant value that was about one-half of what it 

was prior to collapse. While the axial location of the tube opening did not 

coincide with the observed shock curvature, these locations could be linked 

quite successfully by a sound wave in the moving gas (u + a rarefaction wave) 

originating at the tube opening. 

The growth of a thin boundary layer behind the shock wave was 

postulated as the cause of the incomplete closure of the collapsed pressure 

tube. As the detonation wave propagates in the explosive surrounding the 

tube, the walls of the tube are accelerated radially inward along with that 

portion of the boundary layer gas having an axial velocity less than that of the 

detonation wave. Since the gas in the boundary layer receives little additional 

axial acceleration from the implosion, it is left behind the detonation wave and 

trapped by the collapsing tube. This loss of gas causes downstream-running 

rarefaction waves which reduce the pressure and the velocity of the shocked 

gas and decreases the shock velocity. This loss continues until the mass flow 

through the shock wave equals the mass flow trapped by the collapsing liner. 

At this point, the shock velocity becomes equal to the velocity of the piston, 

the detonation velocity, and the length of shocked gas reaches a fixed, steady- 

state value. The trajectories shown in Figure 28 illustrate the wave system 

required to produce the driver performance given above in Figure 27. Pressure- 

distance profiles in the shocked gas are also given in Figure 28 to show one of 

the effects of the downstream-running rarefactions. 

A semi-empirical analysis was performed using turbulent boundary- 

layer theory to relate the steady- state length of shocked gas Rss to the 

Reynolds number of the steady-state gas flow 

R 
9 = KRed l/4 

where d is the initial.internal diameter of the pressure tube, Red is the 
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Reynolds number based on tube diameter, and K is an experimentally 

determined constant. This relation appears to be valid for the experimental 

data obtained thus far. A typical length of shocked gas (in the kilobar range) 

for a nitromethane driver is in the neighborhood of 25 to 30 diameters. 

The shock-wave attenuation produced by the entrapment of boundary- 

layer gas in explosive drivers is similar to that associated with conventional 

shock tubes. In conventionally-driven shock tubes, the test time and the 

length of shocked test gas are limited by the boundary-layer gas that flows 

out of the test gas region and into the driver gas. This flow attenuates the 

shock wave while accelerating the contact surface separating the test gas 

and driver gas. Attempts have been made to correlate observed shock-wave 

trajectories with predictions based on Mirels’ analytical investigations of 

shock-tube test-time limitations (Reference 3). In Mirels’ analysis, 

(Reference 4), the communication time between the shock wave and the 

contact surface--the piston, in the case of the explosive driver--was not 

included. An existing one-dimensional computer program has been modified 

to incorporate this time dependence into Mirels’ assumptions. The continuous 

communication process was treated in finite time steps involving first a 

delay for the boundary layer to build up at a fixed position, and then a second 

interval for rarefactions to overtake the shock wave. The shock trajectories 

calculated in this manner were in excellent agreement with the 

observed trajectories. 

Because of the boundary-layer growth, the gasdynamic conditions in 

the gas were not uniform. However, approximate pressure, velocity, and 

density distribution within the gas can be determined by a calculative method 

in which the gas loss is adjusted to produce a shock trajectory identical to 

what is experimentally observed. Figure 29 shows the observed performance 

of a long tamped driver of the same diameter as the one used in the first stage 

of the two-stage launcher. Indicated in this figure is the location of the 

chambrage plane of the first-stage driver and the length of shocked driver gas 

(30 cm) when the shock first reaches this plane. The operation of the driver 

was simulated in a computer calculation in which a fictitious piston was used 
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to generate the downstream-running rarefaction waves caused by the loss of 

the driver gas. Figure 30 shows the model used to simulate the observed 

driver performance given previously in Figure 29. The shock trajectory 

calculated by this model agrees closely with the observed trajectory. On 

this basis the calculated gasdynamic conditions behind the shock were accepted 

as good approximations of the actual conditions. The gas conditions calculated 

in this manner were used to compute the performance of the first-stage 

launcher. The results of this calculation were given in Section II (Figure 4). 

C. JETTING PHENOMENA IN A LINEAR EXPLOSIVE DRIVER 

The experimental parameters of an explosive driver can be selected 

to generate a wide range of driver-gas properties. Certain combinations of 

these parameters produce initial shock velocities that are considerably higher 

than those predicted by the idealized model of driver performance. For 

example, the experiments illustrated in Figure 23 showed that by reducing the 

initial gas pressure the observed shock velocities approached a value 

approximately twice that predicted by the ideal model. Since the implosive 

collapse of tubes has often been used to produce high-velocity metal jets, 

this velocity overshoot is attributed to the formation of a jet of tube material. 

An experiment was performed to determine: (1) if the observed shock velocity 

was a good indication of the presence or absence of jetting, and (2) whether 

mixing occurred between the jet-gas interface. The driver selected for this 

experiment was known to have a shock velocity considerably higher than the 

ideal predictions. A 50-centimeter length of Plexiglas tubing was used to 

extend the pressure tube to facilitate radiographic diagnostics. A low- voltage, 

high-intensity pulsed X-ray system was used to observe the Plexiglas section 

after the shock wave had entered the Plexiglas extension. The results of the 

experiment are shown in Figure 31. The radiograph taken at 60 psec shows 

the existence of a very high density metal jet (Figure 31b). In addition, the 

observed shock trajectory indicates severe mixing of the jet with the 

shocked gas. 
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Figure 32 shows the results of a similar experiment using the first: 

stage driver of the two-stage launching system. The radiograph given in 

Figure 32b showed no evidence of jet material. It is noted that the performance 

of the first- stage driver is dominated by boundary-layer growth. However, 

the later deceleration of the shock was a result of the radial expansion of 

the Plexiglas extension. 

While not strictly applicable, the classical description of jet formation 

by flat plates has been used to analyze the implosive collapse of cylindrical 

tubes. This analysis was performed under a separate program,” but is 

summarized here for completeness, For this analysis, the colliding materials, 

whether flat plates or the wall of a cylindrical tube, will be referred to as 

liners. The mechanism of jet formation in the collision of two flat plates, as 

proposed by Birkhoff, et al (References 5 and 6), is shown in Figure 33. 

Detonation Wave 

Liner Slug 

High Explosive 

Note: All velocities are measured 
relative to the detonation wave. 

FIGURE 33. FORMATION OF A METAL JET FROM THE 
COLLISION OF TWO PLATES 

%ontract No. DAAD 05-67-C-0001 sponsored by the Ballistics Research 
Laboratory at the Aberdeen Proving Grounds. 
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In their analysis of the jet formation, the flow in the plates is treated as 

incompre s sible and invi scid, and as subsonic relative to the velocity of the 

detonation wave. Mild collisions are not treated, because the pressures 

generated are assumed to be sufficiently large so that material strength can 

be neglected. By applying Bernoulli’s equation to the streamlines in the 

colliding plates, they show that the jet and the slug velocities, Vj and Vs 

respectively, equal the incident flow velocity u D’ Conservation of momentum 

in the axial direction yields the following equations for mass flow in the jet, 

m., and in the slug, ms 
J 

“j = 
m sin2 (8/Z) 2 = cos2 (8n2) 

where 6 is the collapse angle of the plates and m is the total mass flow 

entering the system. 

In collapsing tubes the flow in the liner will normally be supersonic 

rather than subsonic. Figure 34a shows a cylindrical tube collapse where a 

single oblique shock is sufficient to turn the flow to the axial direction. For 

a given supersonic flow velocity a maximum turning angle (@,) will exist, as 

in supersonic gas flow past a wedge. If this turning angle is greater than the 

collapse angle at the inner surface of the liner, it is possible to satisfy the 

axial momentum equation without producing a jet through the formation of an 

attached oblique shock. That is, a liner jet will not be formed if the collapse 

angle of the inner surface is less than the maximum turning angle determined 

for the particular liner material by the flow Mach number where the Mach 

number is approximately equal to the ratio of detonation velocity to the local 

liner sound speed. Thus in order to minimize jetting it is desirable to operate 

with high Mach numbers in order to permit large turning angles. Also, the 

geometry of the liner and explosive system should be chosen so as to produce 

small collapse angles. 
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If the collapse angle of the inner surface is greater than the critical 

turning angle, then the formation of detached shocks may be postulated. In 

Figure 34b tw o streamlines are shown: (1) the stagnation streamline that 

divides the material that flows into the jet from that flowing into the slug, 

and (2) the streamline that divides the liner material with a collapse angle 

greater than the maximum turning angle from that with a lesser angle. In 

Figure 34c the collapse angle of the outer surface is greater than the maximum 

turning angle of the flow, so the second streamline is not present. In both 

cases the detached shock is postulated to form ahead of the collapse point, 

Since increasing the Mach number of the liner reduces jetting, for supersonic 

flow, and sinceit is believed that the maximum jetting occurs in subsonic flow, 

it is desirable to operate at a high Mach number in order to minimize jetting. 

From the above discussion of liner jetting, certain requirements 

emerge for suppressing or minimizing jetting. In particular, small collapse 

angles and supersonic flow conditions are required. In addition, if it is 

accepted that the mass in the jet is proportional to the total mass of the liner 

as given in the subsonic classical jetting analysis, the use of thin liners will 

also minimize the effect of the jet on the internal gas. 

Some of the parameters that affect the collapse angle of the liner are 

the internal gas pressure; the inner radius, thickness, and material properties 

of the liner; the thickness, detonation velocity, and energy density of the 

explosive; and the boundary condition at the outer surface of the explosive 

(tamped or untamped). To evaluate the effects of these parameters, Physics 

International’s computer programs can be used to select the particular 

combination of parameters to produce the desired gas conditions. Depending 

on the application, jetting could be suppressed or enhanced. 

The above discussion of jetting assumed no boundary layer was present 

during the jet formation process. When we take the growth of the boundary 

layer into account it becomes more complex; this process is shown in Figure 35 
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for four characteristic times where the reference frame is moving at 

detonation velocity. At early times, as in Figure 35a, the boundary-layer 

thickness is negligible and a mass of liner jet m. is flowing into the shocked 
J 

gas at a velocity nearly equal to the detonation velocity. A dividing streamline 

is shown separating the mass that flows into the jet from that flowing into the 

slug. Here the slug is the liner material to the left of the stagnation point. 

As the thickness of the boundary layer increases, the dividing streamline 

moves toward the inner surface of the liner as shown in Figure 35b. The jet 

is now composed of both liner material and boundary-layer gases. As the 

thickness of the boundary layer continues to increase, the dividing streamline 

moves past the inner surface of the liner and into the boundary layer, as 

shown in Figure 35~. At this time all of the liner material along with a part 

of the gas in the boundary layer is going into the slug, and the jet is then 

composed solely of the remaining portion of the boundary layer. As the 

boundary layer continues to grow, more gas will be lost and the gas shock 

continually weakened until at some time a steady state will be reached. At 

this time the mass of gas entering through the gas shock just equals that part 

of the boundary layer which is lost inside the slug. This “steady state” is 

pictured in Figure 35d. 

D. RELATED EXPERIMENTS 

Additional experiments were performed to complete the parametric 

study of the linear explosive drivers. For example, Figure 36 compares the 

performance of two explosive drivers in which various masses of diluted 

nitromethane were usedto collapse an 0.316-inch outside diameter by 0.258-inch 

inside diameter steel tube containing helium at 660 psi. The effects produced 

by this variation for these conditions are quite small and probably within the 

experimental uncertainties. 

In another experiment the detonation velocity was varied. The shock 

trajectory of a driver using diluted nitromethane, whose detonation velocity 

is 5.5 km/set, turned out to be quite similar to that of one using CompositionC-4, 
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whose detonation velocity is 8.6 km/set. This trajectory comparison is made 

in Figure 37. The pressure tubes used throughout the experiment were the 

same: outside diameter = 0.316 in. and inside diameter = 0.258 in. , containing 

helium at 660 psi. 

An experiment was designed to determine the scalability of driver 

performance, in which all driver dimensions were increased by a .factor of 

tW0. The pressure tube was virtually twice as large as those used in the 

experiments described above. The initial pressure in the helium was 660 psi. 

Figure 38 shows that the performance of this diluted-nitromethane driver 

(Shot 255- 17) was at first identical with that of the smaller driver (Shot 255-15). 

The slightly higher initial shock velocity followed by a gradual deceleration 

due to the boundary-layer effects was quite scalable. 
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SECTION V 

CONCLUSION 

A. SUMMARY 

The results of the analytical and experimental investigations 

conducted during this program have demonstrated the feasibility of using 

explosively driven launchers to obtain projectile velocities that are 

significantly higher than those obtainable by conventional launchers. A 

two- stage, explosively-driven light gas gun has been designed and used to 

accelerate a 0.17 gm magnesium-lithium projectile to 12.2 km/set. The 

operational concepts of the explosive lensing system employed in the 

second-stage acceleration process have been experimentally verified. Tests 

have shown that the explosive lens can be used to produce an implosively 

formed piston whose motion can be accurately programmed. 

A comprehensive experimental investigation of explosive drivers 

produced sufficient data to formulate a model of driver operation which 

accounts for observed departures from the ideal operation. The model 

included the effects of boundary layer, jetting, and pressure tube expansion. 

The calculative techniques used to predict the performance of the two-stage 

launcher were modified to include these effects. 

B. RECOMMENDATION FOR FUTURE WORK 

No attempt has been made to optimize the performance of the present 

launching system or maximize the projectile velocities. Instead, the main 

effort has been to experimentally determine the basic feasibility of a two- 

stage launcher using the explosive lensing system. The present inability to 

launch an intact projectile is a consequence of improper matching of the first- 

stage gasdynamic cycle with the second- stage acceleration. The uniformly 
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accelerated second-stage piston tends to trap the projectile in its cone 

because the pressure in the accelerating gas is insufficient to maintain an 

adequate distance between the piston and the projectile. The primary 

objective of future work should be to design and test a complete launcher in 

which the acceleration of the second stage is matched to the gasdynamic 

conditions produced by the first stage. Such a launcher would produce an 

almost constant base-pressure acceleration and eliminate the possibility 

of trapping the projectile. After an intact projectile has been launched to 

the previously achieved velocities (12.2 km/set), the second stage lens 

should be redesigned to produce even higher projectile velocities until 

the upper velocity limit of the two-stage launcher system is ultimately 

determined. Once the velocity range is established, -emphasis should be 

directed toward launching complex shapes such as spheres and cones. 
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